<-
zona read_rds(here::here("data", "zonas.rds"))
<-
h_inc dir(recursive = T, pattern = "shp$", full.names = T) |>
read_sf() |>
::clean_names()
janitor
<-
orden |>
zona # st_drop_geometry() |>
select(tipo, sum_km2) |>
with_groups(tipo, summarise, t = sum(sum_km2)) |>
pull(tipo)
<-
colores c(
"#02820d"
"#0a440f"
, "#0c8fad"
, "#bc5c0d"
, "#967d4e"
, "#a38165"
,
)
<-
zona1 |>
zona mutate(tipo = factor(tipo, orden))
Day 16
R
Data Viz
ggplot2
Data analysis
Day 16 from #30dataChartChallenge
<- c(min(h_inc$ano), max(h_inc$ano))
rango
<-
p |>
zona1 select(tipo, geometry) |>
st_as_sf() |>
ggplot()+
geom_sf(data = map_peru_peru, fill = "grey80", color = "grey70") +
geom_sf(aes(fill = tipo), size = .1) +
scale_fill_manual(values = colores) +
labs(
fill = ""
title = "Perú - Incendios georeferenciados"
, subtitle = " \n{2000 - 2017}"
, caption = "#30DayChartChallenge | Day16: Environment\nData: MINAM - Peru | Viz: @JhonKevinFlore1"
, +
) geom_sf(data = h_inc, shape = 13, color = "#d82e17", alpha = .4, size = 2) +
theme_void() +
theme(
panel.background = element_rect("#f2f0e1", color = NA)
plot.background = element_rect("#e5e3d3", color = NA)
, plot.caption = element_text(hjust = .5, color = "gray40")
, plot.title = element_text(hjust = .5, size = 18, face = "bold")
, plot.subtitle = element_text(hjust = .5, size = 14, color = "gray20")
, legend.position = c(.2, .2)
, plot.margin = margin(0, 0, 0.5, 0, "cm")
, )
ggsave(
'plots/day16_dcc_22.png'
plot = p
, width = 7
, height =10
, )
::include_graphics('plots/day16_dcc_22.png') knitr