::shelf(
librarian
tidyverse
, gg3D
, PeruData
, raster
, sf
)
<-
hyo0 filter(map_peru_prov, prov == "huancayo")
<-
hyo |>
raster_peru_alt mask(hyo0) |>
rasterToPoints() |>
as_tibble() |>
rename(alt = 3)
<- min(hyo$alt)
min_h <- max(hyo$alt)
max_h
<- 10
theta <- 0
phi
<- colorRampPalette(
alt_cl c(
"#aa500b"
"#0b68aa"
, "#13a506"
,
) )
Day 14
R
Data Viz
ggplot2
Data analysis
Day 14 from #30dataChartChallenge
<- ggplot(hyo, aes(x=x, y=y, z=alt, color = alt)) +
p axes_3D(theta=theta, phi=phi) +
stat_3D(theta=theta, phi=phi, alpha = .3) +
# stat_wireframe(alpha = .5) +
axis_labs_3D(theta=theta, phi=phi, size=3,
hjust=c(1,1,1.2,1.2,1.2,1.2),
vjust=c(-.5,-.5,-.2,-.2,1.2,1.2)) +
labs_3D(theta=theta, phi=phi,
hjust=c(1,0,0), vjust=c(1.5,0,-.2),
labs=c("Latitud", "Longitud", "Altitud")) +
theme_void() +
labs(
title = "Altitud de la ciudad de Huancayo - Perú"
subtitle = glue::glue("Máxima altitud: {max_h}\nMínima altitud: {min_h}")
, caption = "#30DayChartChallenge\nDay14: 3D | Viz: @JhonKevinFlore1"
, +
) scale_color_gradientn(colours = alt_cl(3)) +
theme(
panel.background = element_rect("white", color = NA)
plot.background = element_rect("white", color = NA)
, plot.title = element_text(hjust = .5)
, plot.subtitle = element_text(hjust = 1)
, legend.position = "none"
, plot.margin = margin(2, 3, 2, 3, "mm")
, plot.caption = element_text(hjust = 0, color = "grey35")
, )
ggsave(
'plots/day14_dcc_22.png'
)
::include_graphics("plots/day14_dcc_22.png") knitr